	R _∫ in systems*				UV spectrum			
					0.1 N HCI		0.5 N NaOH	
	1	2	3	4	λ _{mex} , nm	в	λ _{max} , nm	8
II III	0.70 0.80	0,54 0,70	0.24 0.72	0.12 0.45	264 252	16 800 18 400	260 279	13 200 14 000

*Systems: 1) isopropanol-water --concentrated hydrochloric acid (65.0:18.4:16.4); 2) ethyl acetate --98% formic acid --water (70:20:10); 3) tert-butanol-methyl ethyl ketone-water --98% formic acid (44:44:11:0.26); 4) n-butanol-2 N aqueous ammonia-ethanol (20:5:2).

no inhibiting activity on the growth of the tumors in either males or females. Compound II inhibited the growth of transplated Walker's carcinosarcoma in the rat to the extent of 37% after ten doses of 60 mg/ kg of the substance and to the extent of 57% after a similar administration of 120 mg/kg. The inhibiting effect was shown similarly in males and females. Compound II had no clear inhibiting effect on the growth of Pleace's lymphosarcoma. The LD_{50} in white mice with intraperitoneal administration was 600 mg/kg for compound II and 300 mg/kg for compound III.

REFERENCES

W. Wilson, J. Chem. Soc., 1157, 1948.
W. J. Haggerty, R. H. Springer, and C. C. Cheng, J. Med. Chem., 8, 797, 1965.

1 April 1967

Institute of Organic Synthesis AS LatvSSR, Riga

FORMATION OF 5-METHYL-4-PHENYL-1, 2-DITHIOLEN-3-THIONE BY THE REACTION OF 2-PHENYLBUTANE WITH ELEMENTARY SULFUR

M. G. Voronkov and A. N. Pereferkovich

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 6, p. 1133, 1967

UDC 547.738+546.22-121+547.734

Previously, one of us has shown [1, 2] that the reaction of sulfur with 1- and 2-phenylbutanes leads to the formation of 2- and 3phenylthiophenes, respectively, with yields of about 5%. The action of sulfur on 2-methyl-4-phenylbutane has given 4-methyl-2-phenylthiophene (yield about 12%) [3]. On the other hand, the catalytic reaction of sulfur with 1- and 2-phenylpropanes leads to the formation of 5- and 4-phenyl-1, 2-dithiolen-3-thiones, respectively [4, 5].

Continuing our investigation of the reaction of sulfur with arylsubstituted butanes and higher arylalkanes, we have shown that when it is carried out catalytically the corresponding aryl-1, 2-dithiolen-3thiones are formed in many cases in addition to arylthiophenes. Thus, for example, when 185.0 g (1.375 mole) of 2-phenylbutane was heated with 88.0 g (2.75 g-atom) of sulfur in the presence of 0.7 g (0.016 mole-%) of mercuriacetamide at $180^{\circ}-200^{\circ}$ C for 30 hr, 5.5 g (5.6% of theoretical, calculated on the 2-phenyl-butane that had reacted) of 3-phenylthiophene (I) and 1.5 g (1.1%) of 5-methyl-4-phenyl-1, 2dithiolen-3-thione (II) were isolated, the latter having been formed in the following way.

$$\begin{array}{c} {}^{t}_{0}H_{S}-CH-CH_{3}\\ CH_{3}-CH_{2} \end{array} + s \ S \end{array} \xrightarrow{\ \ C} \begin{array}{c} C_{6}H_{5}-C-C-S\\ H_{3}-CH_{3} \end{array} + s \ H_{2}S \\ CH_{3}-CS \end{array}$$

To isolate the reaction products, the unchanged 2-phenylbutane was distilled off (102 g or 0.76 mole), the free sulfur was eliminated from the residue by means of dimethylformamide, and it was distilled with superheated steam. The resulting reddish crystals were separated chromatographically on a column of silica gel. The eluant was a mixture of petroleum ether and benzene (5:1). From the appropriate fraction of the eluate were obtained red plate-like crystals with mp $91^{\circ}-92^{\circ}$ C (from acetic acid), which corresponds to literature

data [6] for Π (mp 92° C). Found, %: C 53.40; H 4.00; S 42.64. Calculated for C₁₀H₈S₃, %: C 53.53; H 3.59; S 42.88.

Similarly, I was isolated with mp $91^{\circ}-92^{\circ}$ C (literature data [2], mp $91.5^{\circ}-92^{\circ}$ C). This substance was shown to be 3-phenylthiophene by a mixed melting point.

By modifying the reaction conditions (for example, by the dropwise addition of 2-phenylbutane containing 5 mole-% of morpholine into an excess of sulfur heated to 200°-210° C), the yield of I can be raised to 10-15%.

REFERENCES

1. M. G. Voronkov and A. S. Broun, ZhOKh, 18, 70, 1948.

2. M. G. Voronkov, A. S. Broun, G. B. Karpenko, and B. L. Gol'shtein, ZhOKh, 19, 1356, 1949.

3. M. G. Voronkov and B. L. Gol'shtein, ZhOKh, 20, 1219, 1950.

4. M. G. Voronkov and T. V. Lapina, KhGS [Chemistry of Heterocyclic Compounds], 342, 1965.

5. M. G. Voronkov and T. V. Lapina, KhGS [Chemistry of Heterocyclic Compounds], 522, 1966.

6. L. Legrand, Y. Mollier, and N. Lozach, Bull. Soc. chim. France, 327, 1953.

26 June 1967

Institute of Organic Synthesis, AS LatvSSR, Riga